Non-equilibrium supramolecular polymerization
نویسندگان
چکیده
Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.
منابع مشابه
Compression, supramolecular organization and free radical polymerization of ethylene gas
At low pressure, ethylene gas consists of single translating and rotating molecules and behaves as an ideal gas. With decrease of free volume by compression, various rotating supramolecular particles are formed, which require less space for the movement: molecular pairs, bimolecules and oligomolecules. The appearance of a new kind of particles is manifested as a phase transition of the second o...
متن کاملNon-equilibrium steady states in supramolecular polymerization
Living systems use fuel-driven supramolecular polymers such as actin to control important cell functions. Fuel molecules like ATP are used to control when and where such polymers should assemble and disassemble. The cell supplies fresh ATP to the cytosol and removes waste products to sustain steady states. Artificial fuel-driven polymers have been developed recently, but keeping them in sustain...
متن کاملSupramolecular polymers: Chain growth in control.
Supramolecular polymers are a class of materials characterized by a repetition of monomer units held together by non-covalent forces such as metal coordination, π–π interactions and hydrogen bonding1–4. Compared with their covalent counterparts the unique properties of these polymers have attracted considerable attention, for instance, the self-healing ability that arises from the thermodynamic...
متن کاملSupramolecular Interfacial Polymerization: A Controllable Method of Fabricating Supramolecular Polymeric Materials
A new method of supramolecular polymerization at the water-oil interface is developed. As a demonstration, an oil-soluble supramonomer containing two thiol end groups linked by two ureidopyrimidinone units and a water-soluble monomer bearing two maleimide end groups are employed. Supramolecular interfacial polymerization can be implemented by a thiol-maleimide click reaction at the water-chloro...
متن کاملSupramolecular polymerization from polypeptide-grafted comb polymers.
The helical and tubular structures self-assembled from proteins have inspired scientists to design synthetic building blocks that can be "polymerized" into supramolecular polymers through coordinated noncovalent interactions. However, cooperative supramolecular polymerization from large, synthetic macromolecules remains a challenge because of the difficulty of controlling the structure and inte...
متن کامل